Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 114, No. 3, June 2002, pp 163–174 © Indian Academy of Sciences

Mixed ligand complex formation of Fe^{III} with boric acid and typical N-donor multidentate ligands

G N MUKHERJEE* and ANSUMAN DAS

Department of Chemistry, Calcutta University, University College of Science, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India e-mail: gurunath@cucc.ernet.in

MS received 23 October 2001; revised 15 April 2002

Abstract. Equilibrium study of the mixed ligand complex formation of Fe^{III} with boric acid in the absence and in the presence of 2, 2'-bipyridine, 1,10-phenanthroline, diethylenetriamine and triethylenetetramine (L) in different molar ratios provides evidence of formation of Fe(OH)²⁺, Fe(OH)¹₂, Fe(L)³⁺, Fe(H₂BO₄), Fe(OH)(H₂BO₄)⁻, Fe(OH)₂(H₂BO₄)²⁻, Fe(L)(H₂BO₄) and Fe₂(L)₂(BO₄)⁺ complexes. Fe(L)³⁺₂, Fe(L)₂(H₂BO₄) and Fe₂(L)₄(BO₄)⁺ complexes are also indicated with 2,2'-bipyridine and 1,10-phenanthroline. Complex formation equilibria and stability constants of the complexes at 25 ± 0.1°C in aqueous solution at a fixed ionic strength, $I = 0.1 \text{ mol dm}^{-3}$ (NaNO₃) have been determined by potentiometric method.

Keywords. Mixed ligand-Fe^{III}-borate complexes; complex equilibria; N-donor multidentate ligands.

1. Introduction

Enhancement of acidity of boric acid (H₃BO₃) in presence of *cis*-1,2-diols, *cis*-2-hydroxy acids and *cis*-1,2-dicarboxylic acids due to the formation of chelated structures with tetracovalent electron deficient B^{III} is well-known¹. Acidity of aqueous solution of H₃BO₃ is found to be enhanced in the presence of *cis*-diaqua Co^{III} complexes: *cis*-[Co^{III}(N₄)(H₂O)₂]³⁺, where, (N₄) = (2,2'-bipyridine)₂ or (1,3-diaminopropane)₂ or triethyl-enetetramine, due to the formation of mononuclear (1) and binuclear (2) mixed ligand borate complexes through *pseudo substitution* reactions, in which Co–O bonds remain intact and substitution of Co–OH moiety takes place on the electron-deficient B^{III} centre with release of the proton².

Acidity of aqueous solution of H₃BO₃ is also enhanced in the presence of coordinately unsaturated labile complexes, $[M^{II}(L)(H_2O)_2]^{2+}$, M = Co, Ni, Cu and Zn, $L = (N_2)$, (N_4) amine formed *in situ* in ternary M^{II} -L-H₃BO₃ mixtures³. With the view to studying the

^{*}For correspondence

effect of coordinately unsaturated $[Fe^{III}(amine)(H_2O)_2]^{3+}$ complexes on the acidity of H_3BO_3 , complex formation equilibria of Fe^{III} with H_3BO_3 in the absence and in the presence of 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen) (hereafter, L¹) and diethylenetriamine (den), triethylenetetramine (trien) (hereafter, L²) have been investigated by potentiometric methods using different molar ratios of the reactants Fe^{III} , (L¹ or L²) and H_3BO_3 in aqueous solution at a fixed ionic strength $I = 0.1 \mod \text{dm}^{-3}$ (NaNO₃) at $25 \pm 0.1^{\circ}$ C. Stoichiometry and the formation constants of the complexes and complex formation equilibria have been evaluated by a computerised method⁴.

2. Experimental

Boric acid, bipy, phen, sodium nitrate, nitric acid were of AR grade. Den and trien (AR) were converted into their corresponding nitrate salts, den.3HNO₃ and trien.4HNO₃ respectively, air-dried and analysed ⁵. Ferric nitrate solution was prepared by dissolving freshly precipitated, alkali-free Fe(OH)₃ in standard HNO₃ and standardised by combined acid–base, ion exchange and complexometric titrations ⁵.

The equilibrium study involved *p*H-metric titrations³ in aqueous medium of a series of solutions (0.025 dm³) containing known amounts (0.0005–0.005 mol dm⁻³) of H₃BO₃ and/or L (L = bipy, phen, den and trien in their protonated forms) and known amount (0.01 mol dm⁻³) of free HNO₃, in the absence and in the presence of known amounts (0.0005–0.001 mol dm⁻³) of Fe^{III}-nitrate, keeping the Fe^{III}: L: H₃BO₃ ratios 1:1:1, 1:2:1, 2:2:1 and 2:4:1 as required, with carbonate-free⁶ standard 0.1 mol dm⁻³ NaOH solution, maintaining a fixed ionic strength, I = 0.1 mol dm⁻³ (NaNO₃).

Ionic product of water at the experimental temperature and activity coefficient of H^+ ion at the experimental ionic strength were obtained from literature^{7,8}. Analytical concentrations of H^+ ion corresponding to the *p*H-meter readings were obtained by the usual procedure⁹. Formation constants (table 1) were calculated with the aid of the SCOGS computer program⁴. Complex formation equilibria were elucidated with the help of speciation curves.

3. Results and discussion

3.1 Proton-ligand equilibria

In the *p*H-range of investigation bipy and phen up to two protons, den bind up to three and trien binds up to four protons (table 1). H_3BO_3 titrates as a weak monobasic acid ($pK_{H_3BO_3}^H = 9.00$) in aqueous solution due to its ionisation, not as a proton donor, but as a Lewis acid, accepting an OH⁻ according to equilibrium (1)¹⁰:

$$H_3BO_3 + 2H_2O = B(OH)_4^- + H_3O^+,$$
 (1)

$$K_{\rm H_3BO_3}^{\rm H} = ([{\rm H_3O}] [{\rm B(OH)}_4])/[{\rm H_3BO_3}].$$
 (1a)

Charges are not shown in the expressions for clarity.

3.2 Hydrolytic equilibria of Fe^{III}

Fe^{III} is so extensively hydrolysed in aqueous solution that Fe(aq)³⁺ hardly exceeds 25% even at pH < 2, in as low as 5×10^{-4} mol dm⁻³ concentration.

Table 1. Formation constants* of mixed ligand Fe ^{III} – L – borate complexes with L = bipy, phen, den and trien in aqueous solution. $I = 0.1 \text{ M} (\text{NaNO}_3)$; Temperature = 25°C								
(a)	Hydrolysis constants of	$Fe(aq)^{3+}$ ions						
	$\log K_{\rm Fe}^{\rm H} = -1.62$	$\log K_{\rm Fe}^{2\rm H} = -4.28$	$\log K_{\rm Fe}^3$	^H −7·91				
(b)	Formation constants of	$Fe^{III} - H_3BO_3$ complete	exes					
(i) Overall formation c	onstants						
	$\log \boldsymbol{b}_{\mathrm{Fe}(\mathrm{H}_{2}\mathrm{BO}_{4})}^{\mathrm{Fe}}$ 3.67	$\log \boldsymbol{b}_{\mathrm{Fe}(\mathrm{OH})(\mathrm{H}_{2}\mathrm{BO}_{4})}^{\mathrm{Fe}}$ 1	l·16 log k	$Fe(OH)_2(H_2BC)$	$_{4)}$ -1.72			
(i	i) Effect of coordinate H ₃ BO ₃	ion with Fe(aq) ³⁺ , Fe	$e(OH)^{2+}$ and	$\operatorname{Fe}(\operatorname{OH})_2^+$ on	ionisation of			
$\log K_{\text{TE}}^{3\text{H}}$ is not in $\log K_{\text{TE}}^{3\text{H}}$ or the normalized statements of $\log K_{\text{TE}}^{3\text{H}}$								
-5.33		-6.22	-6·22		-6·44			
		$(\Delta \log K_{\rm Fe})_1 \\ -0.89$		$(\Delta \log K_{\rm Fe})_2 - 1 \cdot 11$				
		Ligands (L)						
Constants		bipy	phen	den	trien			
(c)	Proton-ligand constant	\$						
	$\log K_{\mathrm{HL}}^{\mathrm{H}}$	4.23	4.86	9.76	9.44			
	$\log K_{\rm H_{2L}}^{\rm H}$	1.32	1.90	8.90	8.92			
	logK ^H _{H3L}	_	_	4.05	6.74			
	$\log K_{\mathrm{H_{4}L}}^{\mathrm{H}}$	-	_	_	3.56			
(d)	Fe ^{III} – L binary constan	ats						
(i) Overall formation constants								
	$\log K_{\rm FeL}^{\rm Fe}$	9.13	10.41	18.76	21.77			
	$\log \boldsymbol{b}_{\mathrm{Fe}(\mathrm{L})(\mathrm{OH})}^{\mathrm{Fe}}$	6.96	8.54	15.18	15.47			
	$(\Delta \log K_{\rm Fe})_1$	-0.55	-0.25	-1.96	-4.68			
	$\log \boldsymbol{b}_{\text{Fe}(L)(OH)}^{\text{Fe}}$	5.11	6.43	10.91	10.85			
	$(\Delta \log K_{\rm Fe})_2$	0.26	0.30	-3.57	-6.64			
	$\log K_{\rm FeL_2}^{\rm Fe}$	18.11	19.92	_	_			
	$\log \boldsymbol{b}_{\text{Fe}(L)_2(\text{OH})}^{\text{Fe}}$	14.74	16.43	_	_			
	$(\Delta \log K_{\rm Fe})_1$	-1.75	-1.87	_	_			
	$\log \boldsymbol{b}_{\text{Fe}(L)_2(\text{OH})_2}^{\text{Fe}}$	10.76	12.52	_	_			
	$(\Delta \log K_{\rm Fe})_2$	-3.07	-3.12	_	_			

(Continued...)

Table 1. (Continued)								
		Ligands (L)						
Constants		bipy	phen	den	trien			
	(ii) Hydrolysis constants o	of Fe(L)						
	$\log K_{\rm Fe(L)}^{\rm H}$	-2.17	-1.87	-3.58	-6.30			
	$\log K_{\rm Fe(L)}^{\rm 2H}$	-4.02	-3.98	-7.85	-10.92			
	$\log K_{\rm Fe(L)_2}^{\rm H}$	-3.37	-3.39	_	_			
	$\log K_{\rm Fe(L)_2}^{\rm 2H}$	-7.35	-7.40	-	-			
(e)	$e^{III} - L - H_3 BO_3$ ternary constants							
	(i) Overall formation const	erall formation constants						
	$\log b_{1121}$	14.39	14.78	21.89	24.52			
	$\log \boldsymbol{b}_{2201}$	24.06	25.02	37.68	43.97			
	$\log \boldsymbol{b}_{1221}$	21.28	22.82	_	_			
	$\log \boldsymbol{b}_{2401}$	36.78	39.91	_	_			
	(ii) Effect of coordination with $Fe(L)$ and $Fe(L)_2$ on ionisation of H_3BO_3							
	$\log K_{[Fe(L)(OH)_2+H_3BO_3]}^{H}$	0.28	-0.65	_	_			
	$\log K_{[2Fe(L)(OH)_2+H_3BO_3]}^{H}$	4.84	3.16	_	_			
	$log K_{[Fe(L)_2+H_3BO_3+H_2O]}^{3H}$	-5.83	-6.10	_	_			
	$log K_{[Fe(L)+H_3BO_3+H_2O]}^{3H}$	_	_	-5.87	-6.25			
	$log K_{[Fe(L)_2(OH)+H_3BO_3]}^{2H}$	-2.46	-2.61	-	-			
	$log K_{[2Fe(L)_2+H_3BO_3+H_2O]}^{5H}$	-8.44	-8.93	_	_			
	$log K_{[2Fe(L)+H_{3}BO_{3}+H_{2}O]}^{5H}$	_	_	-8.84	-8.57			
	$log K_{[Fe(L)_2(OH)+H_3BO_3]}^{2H}$	-1.70	-1.95	_	-			

*Limits of error in the constants: $\pm (0.02 \sim 0.05)$ in log scale

$$K_{\text{Fe}}^{x\text{H}} = ([\text{Fe}(\text{OH})_x][\text{H}]^x)/[\text{Fe}], \qquad (x = 1, 2, 3).$$
 (2a)

The predominant Fe^{III} species in the range $pH \sim 2-4$, are Fe(OH)²⁺ and Fe(OH)⁺₂. The concentration of Fe(OH)₃, is negligibly small. Although Fe^{III} has a profound tendency to form polynuclear **m** dioxo species, concentrations of such species in the experimental concentration range are negligible¹¹.

3.3 $Fe^{III} - H_3BO_3$ binary equilibria

In the presence of Fe^{III}, the buffer region corresponding to the ionisation (1) of H₃BO₃ is shifted to lower *p*H regions due to the formation of Fe(H₂BO₄), Fe(H₂BO₄)(OH)⁻ and Fe(H₂BO₄)(OH)²⁻ complexes according to

$$\operatorname{Fe}(\operatorname{OH})_{x}^{(3-x)+} + \operatorname{H}_{3}\operatorname{BO}_{3} + \operatorname{H}_{2}\operatorname{O} = \operatorname{Fe}(\operatorname{OH})_{x}(\operatorname{H}_{2}\operatorname{BO}_{4})^{x-} + 3\operatorname{H}^{+}, (x = 0, 1, 2).$$
 (3)

*p*H measurements, however, could not be extended above $pH \ge 4$ due to commencement of precipitation, probably of electroneutral Fe(OH)₃ and/or Fe(H₂BO₄), which respectively constitute ~ 20% and 5% of total Fe^{III}. Formation constants of [Fe(OH)_x(H₂BO₄)]^{x-} complexes may be defined according to

$$Fe^{3+} + B(OH)_4^- + xH_2O = Fe(OH)_x(H_2BO_4)^{x-} + (2+x)H^+,$$
 (4)

$$\boldsymbol{b}_{Fe(OH)_{x}(H_{2}BO_{4})}^{Fe} = ([Fe(OH)_{x}(H_{2}BO_{4})][H]^{(2+x)})/([Fe][B(OH)_{4}]).$$
(4a)

 $\boldsymbol{b}_{Fe(OH)_x(H_2BO_4)}^{Fe}$ values may be obtained as computer output ⁴, from which the equilibrium constants of the reactions (3) may be calculated using

$$\log K_{[\text{Fe}(\text{OH})_x + \text{H}_3\text{BO}_3]}^{x\text{H}} = \log \mathbf{b}_{\text{Fe}(\text{OH})_x (\text{H}_2\text{BO}_4)}^{\text{Fe}} + \log K_{\text{H}_3\text{BO}_3}^{\text{H}} + \log K_{\text{Fe}}^{x\text{H}}.$$
 (3a)

Speciation curves of Fe^{III} -H₃BO₃ system also indicate the formation of the $[\text{Fe}(\text{OH})_x(\text{H}_2\text{BO}_4)]^{x-}$ complexes according to the reproportionation equilibria,

$$\operatorname{Fe}(\operatorname{OH})_{x}^{(3-x)+} + \operatorname{Fe}(\operatorname{H}_{2}\operatorname{BO}_{4}) \qquad \operatorname{Fe}(\operatorname{OH})_{x}(\operatorname{H}_{2}\operatorname{BO}_{4})^{x-} + \operatorname{Fe}^{3+},$$
 (5)

for which the $(\Delta \log K_{\rm Fe})_x$ values ¹² may be calculated using

$$(\Delta \log K_{\rm Fe})_x = \log \boldsymbol{b}_{\rm Fe(OH)_x(H_2BO_4)}^{\rm Fe} - \log \boldsymbol{b}_{\rm Fe(H_2BO_4)}^{\rm Fe} - \log K_{\rm Fe}^{xH}.$$
(5a)

Predominant Fe^{III} species in this system are Fe(OH)²⁺, Fe(OH)⁺₂ and Fe(OH)₂(H₂BO₄)²⁻. Percentages of Fe(H₂BO₄) and Fe(OH)(H₂BO₄)⁻ are very small in the entire *p*H range studied. Negative values of $(\Delta \log K_{Fe})_x$ (table 1) indicate much less relevance of the reproportionation equilibria (5) as compared to that of equilibria (4).

3.4 Fe^{III} - (L^1/L^2) binary equilibria (L^1 = bipy, phen; L^2 = den, trien)

Predominant Fe^{III} species at lower *p*H (~2) values in Fe^{III}–L¹–H₃BO₃ systems are Fe(L¹)(aq)³⁺, which with rise of *p*H undergo hydrolysis to produce Fe(L¹)(OH)^{(3-x)+}_x according to

$$Fe(L^{1})^{3+} + xH_{2}O \qquad Fe(L^{1})(OH)_{x}^{(3-x)+} + xH^{+},$$
(6)

$$K_{\text{Fe}(L^1)}^{xH} = ([\text{Fe}(L^1)(\text{OH})_x][\text{H}]^x)/[\text{Fe}(L^1)], \quad (x = 1, 2, 3).$$
 (6a)

The overall formation constants $(\boldsymbol{b}_{Fe(L^1)(OH)_x}^{Fe})$ of these ternary hydroxo complexes, $Fe(L^1)(OH)_x^{(3-x)+}$, defined according to

$$\operatorname{Fe}^{3+} + L^{1} + xH_{2}O = \operatorname{Fe}(L^{1})(OH)_{x}^{(3-x)+} + xH^{+},$$
 (7)

$$\boldsymbol{b}_{\text{Fe}(L^{1})(\text{OH})_{x}}^{\text{Fe}} = ([\text{Fe}(L^{1})(\text{OH})_{x}][\text{H}]^{x})/([\text{Fe}][L^{1}]),$$
(7a)

may be obtained as computer output⁴, from which the hydrolysis constants, $K_{Fe(L^1)}^{xH}$, may be calculated using the relations

$$\log K_{\text{Fe}(L^{1})}^{\text{xH}} = \log \boldsymbol{b}_{\text{Fe}(L^{1})(\text{OH})_{x}}^{\text{Fe}} - \log K_{\text{Fe}(L^{1})}^{\text{Fe}},$$
(7b)

where $K_{Fe(L^1)}^{Fe}$ is the stability constant of the binary $Fe(L^1)$ complex, defined according to

$$Fe^{3+} + L^1 = Fe(L^1)^{3+},$$
 (8)

$$K_{\text{Fe}(1^{1})}^{\text{Fe}} = [\text{Fe}\text{L}^{1}]/([\text{Fe}][\text{L}^{1}]).$$
 (8a)

In the range *p*H 2–4, the ligands L² (den and trien) exist in their protonated $(L^2H_y^{y+})$ forms (*y* = 1, 2, 3, 4). 1:1 binary Fe(L²)(aq)³⁺ complexes are formed according to

$$Fe(aq)^{3+} + L^2 H_v^{y+} \qquad Fe(L^2)(aq)^{3+} + yH^+, \tag{9}$$

$$K_{\text{Fe}(1^2)}^{\text{Fe}} = [\text{Fe}L^2]/([\text{Fe}][L^2]).$$
 (9a)

Speciation curves of these systems also indicate reproportionation equilibria of the type (5), for which the $(\Delta \log K_{Fe})_x$, (x=1,2) values corresponding to $Fe(OH)_x(L)^{(3-x)+}$ complexes may be calculated using relations of the type (5a) substituting $K_{Fe(L)}^{Fe}$ ($L=L^1$, L^2) for $\mathbf{b}_{Fe(H_2BO_4)}^{Fe}$. While the $(\Delta \log K_{Fe})_x$ values for $Fe(OH)_x(H_2BO_4)^{x-}$ are more negative than the statistical values ¹², those of $Fe(OH)_x(L^1)^{(3-x)+}$ are found to be less negative than the statistical values or even positive (table 1). Since both OH⁻ and $H_2BO_4^{3^-}$ are '**s** basic only' ligands, whereas, L^1 are '**s** basic and **p** acidic' ligands, formation of ternary $Fe(OH)_x(H_2BO_4)^{x-}$ complexes are disfavoured due to electronic repulsion arising from $(H_2BO_4) \rightarrow Fe \leftarrow OH$ **s** bonding, whereas, the formation of $Fe(OH)_x(L^1)^{(3-x)+}$ complexes are favoured due to $(L^1) \leftarrow Fe$ **p** back bonding, which lowers electron–electron repulsion arising from $L^1 \rightarrow Fe \leftarrow OH$ **s** bonding and strengthens the L^1 -Fe bonds by synergistic effect. ($\Delta \log K_{Fe})_x$ values (table 1) indicate slightly higher **p** acidity of phen over bipy in these complexes.

The difference between the hydrolysis constants of the uncomplexed $Fe(aq)^{3+}$ ion and that of the complexed $Fe(L)(aq)^{3+}$ ions $(K_{Fe}^{xH} \text{ and } K_{Fe(L)}^{xH} \text{ respectively})$ on the log scale (table 1) gives a measure of the difference in the acidity of coordinated H₂O in free and complexed Fe^{III} ions and also the relative strengths of the $L \rightarrow Fe^{III}(\textbf{s})$ - and $L \leftarrow Fe^{III}(\textbf{p})$ bonds in these $Fe(L)(OH)_x^{(3-x)+}$ complexes. It is observed that coordination of '**s** basic only' ligands (L^2) , viz., den $(N_3-\textbf{s})$ and trien $(N_4-\textbf{s})$ to Fe^{III} lowers the acidity of the coordinated H₂O. On the other hand, in the coordination of '**s** basic and **p** acidic' ligands (L¹), viz., bipy, phen (N₂- $\boldsymbol{s}\,\boldsymbol{p}$) and (bipy)₂ and (phen)₂ (N₄- $\boldsymbol{s}\,\boldsymbol{p}$), although the acidity of the coordinated H₂O tend to increase, their ' \boldsymbol{p} acidic effects' cannot outweight their ' \boldsymbol{s} basic effects'. As a result, acidity of the H₂O ligands coordinated to Fe^{III}-L complexes are in the order: Fe(aq)³⁺ > Fe (N₄- $\boldsymbol{s}\,\boldsymbol{p}$ (aq)³⁺ > Fe(N₂- $\boldsymbol{s}\,\boldsymbol{p}$ (aq)³⁺ Fe(N₃- \boldsymbol{s})(aq)³⁺ > Fe(N₄- \boldsymbol{s})(aq)³⁺.

3.5 $Fe^{III} - L - H_3 BO_3$ general equilibria

Complex formation equilibria of Fe^{III} with H_3BO_3 in the presence of another ligand, L, in aqueous solution may be described according to the general equilibria (10):

$$p \text{Fe}^{3+} + q \text{L} + r \text{B}(\text{OH})_{4}^{-} \qquad [\text{Fe}_{p}(\text{L})_{q}(\text{H}_{s}\text{BO}_{4})_{r}]^{(3p+rs-5r)+} + r(4-s)\text{H}^{+},$$
(10)

$$\boldsymbol{b}_{pqsr} = ([\mathrm{Fe}_p(\mathrm{L})_q(\mathrm{H}_s\mathrm{BO}_4)_r^{(3p+rs-5r)+}][\mathrm{H}^+]^{r(4-s)})/([\mathrm{Fe}^{3+}]^p[\mathrm{L}]^q[\mathrm{B}(\mathrm{OH})_4^-]^r), \quad (10a)$$

where p, q and r are stoichiometric numbers of Fe³⁺, ligand L and BO₄⁵⁻ group and s is the number of H⁺ ions bound to the BO₄⁵⁻ groups in the formula of the complex. The borate ion, B(OH)₄⁻ is derived from the ionisation (1) of H₃BO₃, in aqueous solution. \mathbf{b}_{pqsr} may be obtained as computer output⁴ along with the species distribution data for elucidation of the complex formation equilibria.

3.6 $Fe^{III} - L^1 - H_3BO_3$ ternary equilibria ($L^1 = bipy$, phen)

In both 1:1:1 and 2:2:1 Fe^{III}: L¹: H₃BO₃ systems, the concentrations of the Fe(L¹)³⁺ species are small from the very beginning of the reactions ($pH \sim 2$), in which Fe(L¹)(OH)²⁺ and Fe(L¹)(OH)²⁺ are the predominant Fe^{III} species. The mixed ligand Fe^{III}-borate complexes, Fe(L¹)((H₂BO₄) and (L¹)Fe(BO₄)Fe(L¹)⁺ are formed according to the following equilibria at pH values above 2.5.

$$Fe(L^{1})(OH)_{2}^{+} + H_{3}BO_{3} \quad [(L^{1})Fe(H_{2}BO_{4})] + H^{+} + H_{2}O,$$
(11)

$$Fe(L^{1})(OH)_{2}^{+} + H_{3}BO_{3} + Fe(L^{2})^{3+} [(L^{1})Fe(BO_{4})Fe(L^{1})]^{+} + 3H^{+} + H_{2}O, (12)$$

$$2Fe(L^{1})(OH)_{2}^{+} + H_{3}BO_{3} \qquad [(L^{1})Fe(BO_{4})Fe(L^{1})]^{+} + H^{+} + 3H_{2}O,$$
(13)

$$Fe(L^{1})(OH)^{2+} + H_{3}BO_{3} + Fe(L^{2})^{3+} [(L^{1})Fe(BO_{4})Fe(L^{1})]^{+} + 4H^{+}.$$
 (14)

Binuclear $[(L^1)Fe(BO_4)Fe(L^1)]^+$ complexes are formed from the very beginning of the reactions and represent the most predominant Fe^{III} species in the 2:2:1 Fe^{III}: L¹: H₃BO₃ systems. The overall formation constants, **b**₁₂₁ and **b**₂₂₀₁, of $[(L^1)Fe(H_2BO_4)]$ and $[(L^1)Fe(BO_4)Fe(L^1)]^+$ complexes, defined as below,

$$\boldsymbol{b}_{121} = ([\text{Fe}(\text{L}^1)(\text{H}_2\text{BO}_4)][\text{H}]^2)/([\text{Fe}][\text{L}^1][\text{B}(\text{OH})_4]), \tag{15}$$

$$\boldsymbol{b}_{2201} = ([\text{Fe}_2(\text{L}^1)_2(\text{BO}_4)][\text{H}]^4) / ([\text{Fe}]^2[\text{L}^1]^2[\text{B}(\text{OH})_4]),$$
(16)

may be obtained as computer output⁴ along with the speciation data of these complexes.

Figure 1. Speciation curves for $Fe^{III} - bipy - H_3BO_3$ systems. Fe^{III} : bipy: H₃BO₃ = (**a**) 1: 2:1 and (**b**) 2:4:1; (1) H₃BO₃, (2) Fe(bipy)₂²⁺, (3) Fe(bipy)₂(OH)²⁺, (4) Fe(bipy)₂(OH)₂⁺, (5) Fe(bipy)₂(H₂BO₄), (6) Fe₂(bipy)₄(BO₄)⁺.

In the 1:2:1 and 2:4:1 Fe^{III}: L¹: H₃BO₃ systems (figure 1) the predominant Fe^{III} species at the beginning $(pH \sim 2)$ are Fe(L¹)³⁺₂, (~95%) and Fe(L¹)₂(OH)²⁺, (\approx 5%). The dihydroxo complexes, Fe(L¹)₂(OH)⁺₂, appear at $pH \sim 3$ and their concentrations hardly exceed \approx 10% at the end of the reactions ($pH \sim 4.5$). The major mixed ligand Fe^{III}-borate complexes that constitute about 90% of Fe^{III} and $pH \ge 4$ in the 1:2:1 Fe^{III}: L¹: H₃BO₃ systems are Fe(L¹)₂(H₂BO₄), formed mostly according to (17) and at least to some extent according to (18):

$$\operatorname{Fe}(L^{1})_{2}^{3+} + H_{3}BO_{3} + H_{2}O = [(L^{1})_{2}\operatorname{Fe}(H_{2}BO_{4})] + 3H^{+},$$
 (17)

$$Fe(L^{1})_{2}(OH)^{2+} + H_{3}BO_{3} \qquad [(L^{1})_{2}Fe(H_{2}BO_{4})] + 2H^{+}.$$
(18)

Concentrations of the binuclear $[(L^1)_2Fe(BO_4)Fe(L^1)_2]^+$ complexes, however, hardly exceed ~ 5% in the 1:2:1 Fe^{III}: L¹: H₃BO₃ systems. However, in the 2:4:1 Fe^{III}:L¹: H₃BO₃ systems, the mononuclear $[(L^1)_2Fe(H_2BO_4)]$ complexes appear to be minor species where the binuclear $[(L^1)_2Fe(BO_4)Fe[(L^1)_2]^+$ complexes are formed mainly according to (19) and only slightly according to (20) and (21) at $pH \ge 4$:

$$2Fe(L^{1})_{2}^{3+} + H_{3}BO_{3} + H_{2}O = [(L^{1})_{2}Fe(BO_{4})Fe(L^{1})_{2}]^{+} + 5H^{+},$$
 (19)

170

$$Fe^{III}$$
-L-H₃BO₃ mixed ligand complex equilibria 171

$$Fe(L^{1})_{2}^{3+} + H_{3}BO_{3} + Fe(L^{1})_{2}(OH)^{2+} [(L^{1})_{2}Fe(BO_{4})Fe(L^{1})_{2}]^{+} + 4H^{+},$$
(20)

$$2Fe(L^{1})_{2}(OH)^{2+} + H_{3}BO_{3} \qquad [(L^{1})_{2}Fe(BO_{4})Fe(L^{1})_{2}]^{+} + 3H^{+} + H_{2}O.$$
(21)

Overall formation constants of $[(L^1)_2Fe(H_2BO_4)]$ and $[(L^1)_2Fe(BO_4)Fe(L^1)_2]^+$ complexes, defined according to (22) and (23) respectively,

$$\boldsymbol{b}_{221} = ([\text{Fe}(\text{L}^{1})_{2}(\text{H}_{2}\text{BO}_{4})][\text{H}]^{2})/([\text{Fe}][\text{L}^{1}]^{2}[\text{B}(\text{OH})_{4}]), \qquad (22)$$

$$\boldsymbol{b}_{2401} = ([\text{Fe}_2(\text{L}^1)_4(\text{BO}_4)][\text{H}]^4) / ([\text{Fe}]^2[\text{L}^1]^4[\text{B}(\text{OH})_4]),$$
(23)

are obtained as computer output⁴ along with the speciation data of the complexes. Using computer-refined values of \mathbf{b}_{qsr} , the equilibrium constants of the complex formation reactions (11)–(14) and (17)–(21) may be calculated with the aid of the relations (11a)–(14a) and (17a)–(21a):

$$\log K_{[Fe(L^{1})(OH)_{2}+H_{3}BO_{3}]}^{H} = \log \boldsymbol{b}_{1121} + \log K_{H_{3}BO_{3}}^{H} - \log \boldsymbol{b}_{Fe(L^{1})(OH)_{2}}^{Fe}, \quad (11a)$$

$$\log K_{[Fe(L^{1})+Fe(L^{1})(OH)_{2}+H_{3}BO_{3}]}^{3H} = \log \boldsymbol{b}_{2201} + \log K_{H_{3}BO_{3}}^{H} - \log K_{Fe(L^{1})}^{Fe} - \log \boldsymbol{b}_{Fe(L^{1})(OH)_{2}}^{Fe},$$
(12a)

$$\log K_{[2Fe(L^{1})(OH)_{2}+H_{3}BO_{3}]}^{H} = \log \boldsymbol{b}_{2201} + \log K_{H_{3}BO_{3}}^{H} - 2\log \boldsymbol{b}_{Fe(L^{1})(OH)_{2}}^{Fe}, \quad (13a)$$

$$\log K_{[Fe(L^{1})+Fe(L^{1})(OH)+H_{3}BO_{3}]}^{HH} = \log \mathbf{b}_{2201} + \log K_{H_{3}BO_{3}}^{H} - \log K_{Fe(L^{1})}^{Fe} - \log \mathbf{b}_{Fe(L^{1})(OH)}^{Fe},$$
(14a)

$$\log K_{[\text{Fe}(\text{L}^{1})_{2}+\text{H}_{3}\text{BO}_{3}+\text{H}_{2}\text{O}]}^{3\text{H}} = \log \boldsymbol{b}_{1221} + \log K_{\text{H}_{3}\text{BO}_{3}}^{\text{H}} - \log \boldsymbol{b}_{\text{Fe}(\text{L}^{1})_{2}}^{\text{Fe}}, \quad (17a)$$

$$\log K_{[Fe(L^{1})_{2}(OH)+H_{3}BO_{3}]}^{2H} = \log \boldsymbol{b}_{1221} + \log K_{H_{3}BO_{3}}^{H} - \log \boldsymbol{b}_{Fe(L^{1})_{2}(OH)}^{Fe},$$
(18a)

$$\log K_{[2Fe(L^{1})_{2}+H_{3}BO_{3}+H_{2}O]}^{5H} = \log \boldsymbol{b}_{2401} + \log K_{H_{3}BO_{3}}^{H} - 2\log \boldsymbol{b}_{Fe(L^{1})_{2}}^{Fe},$$
(19a)

$$\log K_{[Fe(L^{1})_{2}+Fe(L^{1})_{2}(OH)+H_{3}BO_{3}]}^{4H} = \log \boldsymbol{b}_{2401} + \log K_{H_{3}BO_{3}}^{H} - \log \boldsymbol{b}_{Fe(L^{1})_{2}}^{H} - \log \boldsymbol{b}_{Fe(L^{1})_{2}}^{Fe} - \log \boldsymbol{b}_{Fe(L^{1})_{2}(OH)}^{Fe},$$
(20a)

$$\log K_{[2Fe(L^{1})_{2}(OH)+H_{3}BO_{3}]}^{3H} = \log \boldsymbol{b}_{2401} + \log K_{H_{3}BO_{3}}^{H} - 2\log \boldsymbol{b}_{Fe(L^{1})_{2}(OH)}^{Fe}.$$
 (21a)

3.7 $Fe^{III} - L^2 - H_3 BO_3$ ternary equilibria ($L^2 = den, trien$)

Binary (1:1) Fe^{III}: L² complexes are formed in both in the 1:1:1 and 2:2:1 Fe^{III}: L²: H₃BO₃ systems from the very start of the reactions ($pH \le 2$) according to (9). Concentrations of Fe(H₂BO₄), Fe(OH)(H₂BO₄)⁻ and Fe(OH)₂(H₂BO₄)²⁻, Fe(OH)(L²)²⁺ and Fe(OH)₂(L²)⁺ are found to be negligible. The dominant Fe^{III} species at the early stages of the reactions in these systems are Fe(L²)(aq)³⁺, Fe(OH)(aq)²⁺ and Fe(OH)₂(aq)⁺. Therefore, ionisation of H₃BO₃ at lower pH (2–3·5) values in the presence of Fe^{III} and L² ligands is obviously due to the formation of mixed ligand Fe^{III}–L²–H₃BO₃ complexes according to the following equilibria as the speciation curves (figure 2) imply.

$$Fe(OH)_{2}^{+} + L^{2}H_{y}^{y+} + H_{3}BO_{3} \qquad [Fe(L^{2})(H_{2}BO_{4})] + (y+1)H^{+} + H_{2}O, \qquad (24)$$

$$Fe(L^{2})^{3+} + H_{3}BO_{3} + H_{2}O \qquad [Fe(L^{2})(H_{2}BO_{4})] + 3H^{+},$$
(25)

$$2Fe(L^{2})^{3+} + H_{3}BO_{3} + H_{2}O \qquad [(L^{2})Fe(BO_{4})Fe(L^{2})]^{+} + 5H^{+},$$
(26)

Figure 2. Speciation curves for $Fe^{III} - trien-H_3BO_3$ system: Fe^{III} : trien: $H_3BO_3 = (a)$ 1:1:1 and (b) 2:2:1; (1) H_3BO_3 , (2) $trienH_4^{4+}$, (3) $trienH_3^{3+}$, (4) $Fe(OH)^{2+}$, (5) $Fe(OH)_2^+$, (6) $Fe(OH)_3$, (7) $Fe(trien)^{3+}$, (8) $Fe(trien)(OH)^{2+}$, (9) $Fe(trien)(OH)_2^+$, (10) $Fe(H_2BO_4)$, (11) $Fe(H_2BO_4)(OH)^-$, (12) $Fe(H_2BO_4)(OH)_2^-$, (13) $Fe(trien)(H_2BO_4)$, (14) Fe_2 (trien)₂(BO₄)⁺.

 Fe^{III} -L-H₃BO₃ mixed ligand complex equilibria 173

$$Fe(L^{2})^{3+} + Fe(L^{2}) (H_{2}BO_{4}) \qquad [(L^{2})Fe(BO_{4})Fe(L^{2})]^{+} + 2H^{+}.$$
(27)

Equilibria (24)–(26) are common to both 1:1:1 and 2:2:1 Fe^{III}: L²: H₃BO₃ systems, whereas the equilibrium (27) is identifiable only in the 2:2:1 systems. The overall formation constants, \boldsymbol{b}_{121} and \boldsymbol{b}_{2201} of the complexes $[(L^2)Fe(H_2BO_4)]$ and $[(L^2)Fe(BO_4)Fe(L^2)]^+$ respectively, may be obtained as computer output⁴, from which the equilibrium constants of (24)–(27) may be calculated using the relations (24a)–(27a) below respectively.

$$\log K_{[\text{Fe}(\text{OH})_2 + \text{L}^2\text{H}_y + \text{H}_3\text{BO}_3]}^{(y+1)\text{H}} = \log \boldsymbol{b}_{1121} + \log K_{\text{H}_3\text{BO}_3}^{\text{H}} + \log K_{\text{L}^2\text{H}_y}^{y\text{H}} - \log K_{\text{Fe}}^{2\text{H}}, \quad (24\text{a})$$

$$\log K_{[Fe(L^{2})+H_{3}BO_{3}+H_{2}O]}^{3H} = \log \boldsymbol{b}_{1121} + \log K_{H_{3}BO_{3}}^{H} - \log K_{Fe(L^{2})}^{Fe},$$
(25a)

$$\log K_{[2Fe(L^{2})+H_{3}BO_{3}+H_{2}O]}^{5H} = \log \boldsymbol{b}_{2201} + \log K_{H_{3}BO_{3}}^{H} - 2\log K_{Fe(L^{2})}^{Fe},$$
(26a)

$$\log K_{[\text{Fe}(\text{L}^2) + \text{Fe}(\text{L}^2)(\text{H}_2\text{BO}_4)]}^{2\text{H}} = \log \boldsymbol{b}_{2201} + \log \boldsymbol{b}_{1121} - \log K_{\text{Fe}(\text{L}^2)}^{\text{Fe}}.$$
(27a)

Equilibrium (27) is a unique one of its kind as the equilibrium constant $K_{[Fe(L^2)+Fe(L^2)(H_2BO_4)]}^{2H}$ gives a measure of the coordination tendency of the coordinated $(H_2BO_4)^{3-1}$ ligand species to Fe(L²)(aq)³⁺ ion having two H₂O ligands in *cis*-positions.

The effect of coordination of borate species with $Fe(aq)^{3+}$, $Fe(L-s)^{3+}$ and $Fe(L-s, p)^{3+}$ on the enhancement of acidity of H_3BO_3 may be compared on the basis of the formation constants (table 1) of Fe^{III} -borate and Fe^{III} -L-borate complexes from the reactions of H_3BO_3 with the corresponding Fe^{III} -species. As a matter of fact, the enhancement of acidity of H_3BO_3 due to the formation of mixed ligand borate complexes: $(L^1)_zFe(H_2BO_4)$ and $(L^1)_zFe(BO_4)Fe(L^1)_z^+$, where z = 1, 2, is much higher than that due to the formation of simple binary $Fe(H_2BO_4)$ complex, because of $(L^1) \leftarrow Fe$ **p**bonding. However, this effect is not observed due to the formation of ternary $(L^2)Fe(H_2BO_4)$ and $(L^2)Fe(BO_4)Fe(L^2)^+$ complexes because of the absence of such **p**bonding with these ligands.

The difference between the two constants $\log K_{[L^{(1)}_{2}, Fe(OH)+H_{3}BO_{3}]}^{3H}$, (21a) and $\log K_{[Fe(OH)+H_{3}BO_{3}]}^{3H}$, (3a) shows a tremendous enhancement of acidity of H₃BO₃ (by a factor of ~ 10⁴) due to its reaction with $(L^{1})_{2}$ Fe(OH)²⁺ relative to Fe(OH)²⁺. In this regard the present Fe^{III}-amine complexes may be arranged in the order: Fe^{III}(bipy)_z > Fe^{III}(phen)_z Fe^{III}(den) > Fe^{III}(trien); z = 1, 2 and complexes with (z = 2) > those with (z = 1).

Although the binary $\text{Fe}^{\text{III}}(\text{phen})_z$, z = 1, 2 complexes are relatively more stable than their bipy analogues, $(\text{bipy})_z\text{Fe}(\text{H}_2\text{BO}_4)$ and $(\text{bipy})_z\text{Fe}(\text{BO}_4)\text{Fe}(\text{bipy})_z^+$ are more stable than their phen analogues. Bipy because of free rotation about the C_1-C_1' bond, can adjust much better than phen to the tetrahedral bond angles imposed on Fe^{III} by the borate ligands $\text{H}_2\text{BO}_4^{3^-}$ and $\text{BO}_4^{5^-}$. Due to the structural rigidity of phen, the chelate rings of $(\text{phen})_z\text{Fe}(\text{H}_2\text{BO}_4)$ and $(\text{phen})_z\text{Fe}(\text{BO}_4)\text{Fe}(\text{phen})_z^+$ are strained at the bond angles around Fe^{III} , consequently, the phen complexes are less stable than their bipy analogues. The extent of metal to ligand **p**bonding and hence the stability is obviously higher for the $\text{Fe}(\text{L}^1)_3^{3^+}$ and $\text{Fe}(\text{L}^1)_2(\text{OH})^{2^+}$ complexes than those with $\text{Fe}(\text{L}^1)^{3^+}$ and $\text{Fe}(\text{L}^1)(\text{OH})^{2^+}$

complexes (table 1). Moreover, Fe^{III} in $\text{Fe}(L^1)_2^{3+}$ and $\text{Fe}(L^1)_2(\text{OH})^{2+}$ may exist in low spin $(t_g^5 e_g^2)$ states, and consequently act as a better **p**electron donor than the high spin $(t_g^3 e_g^2)$ in $\text{Fe}(L^1)^{3+}$ and $\text{Fe}(L^1)(\text{OH})^{2+}$ complexes. This is also consistent with the order: $\text{Fe}^{\text{III}}(N_4-\boldsymbol{s}) > \text{Fe}^{\text{III}}(N_2-\boldsymbol{s},\boldsymbol{p}) = \text{Fe}^{\text{III}}(N_3-\boldsymbol{s}) > \text{Fe}^{\text{III}}(N_4-\boldsymbol{s})$ with regard to the effectiveness of the present Fe^{III} -amine complexes in enhancing the ionisation of H_3BO_3 through mixed ligand borate complex formation.

4. Conclusions

Labile Fe(L)(aq)³⁺ complexes, L = bipy, phen (N₂), den (N₃); (bipy)₂, (phen)₂, trien (N₄), formed *in situ*, are structurally compatible with 1,2-*cis*-diols, like the substitution inert *cis*-[(N₄)M^{III}(H₂O)₂]³⁺ complexes (M = Co, Cr), with regard to the enhancement of acidity of boric acid in aqueous solution due to the formation of mononuclear and binuclear mixed ligand Fe^{III}-borate complexes of the types [(L)Fe(H₂BO₄)] and [(L)Fe(BO₄)Fe(L)]⁺ respectively, in which the electron deficient B^{III} attains tetra-covalency through chelation. The binuclear [(L)Fe(BO₄)Fe(L)]⁺ complexes are found to be more stable as compared to the mononuclear [(L)Fe(H₂BO₄)] complexes. The **p**acidic nature of the ligands (L) increases the acidity of the coordinated H₂O molecules in Fe^{III}(L)(aq)³⁺ complexes, which in turn, enhances the acidity of H₃BO₃ to a greater extent than those without having metal to **p**bonding.

Acknowledgement

AD is grateful to the Council of Scientific and Industrial Research, New Delhi for a fellowship.

References

- 1. Boeseken J and Vermaas N 1931 J. Phys. Chem. 35 1477
- 2. Mukherjee G N and Das A 2001 J. Indian Chem. Soc. 78 78
- 3. (a) Mukherjee G N and Das A 2000 J. Indian Chem. Soc. 77 62; (b) Mukherjee G N and Das A 2002 J. Indian Chem. Soc. 79 45
- 4. (a) Sayce I G 1968 *Talanta* **15** 1397; (b) Sayce I G 1970 *Talanta* **18** 653; (c) Sayce I G and Sharma V S 1972 *Talanta* **19** 831
- 5. Kolthoff I M, Sandell E B, Meehan E J and Brukenstein S 1967 *Quantitative chemical analysis* (London: Macmillan) ch. 41
- 6. Schwarzenbach G and Biderman W 1948 Helv. Chim. Acta 31 331
- 7. Wolleym E M, Hurkot D G and Hepler L G 1970 J. Phys. Chem. 74 3908
- 8. Harned H S and Owen B B 1958 *Physical chemistry of electrolytic solutions* (New York: Reinhold)
- 9. Irving H M, Milles M G and Pettit L D 1967 Anal. Chim. Acta 38 475
- 10. Cotton F A and Wilkinson G 1988 Advanced inorganic chemistry 5th edn (New York: Wiley Interscience)
- 11. Flynn C M (Jr) 1984 Chem. Rev. 84 31
- 12. Sigel H 1975 Angew. Chem., Int. Ed. Engl. 14 394